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a d/dx = Differentiation by x
& J/dt = Differentiation with respect to time
a Coordinate system of rotor-blade vibrations

= Deflectlons of elastic axis (straight in un-
deformed state) in y and z directions

= FProfile angle of attack in undeformed state

= Additional angle of attack due to twisting

= rlapping hinge distance

= Rotor radius (for fp1 = 0)
= R - a
= Flapping angle

= Distance from rotor axis up to elastic axis

= Distance from elastic axis up to stress axis

a Distance from elastic axis back to profile
center of gravity

= = polar radius of gyration

(area integral) of a profile; only tension-
bearing parts of cross section taken 1nto
account

= Mass per unit of length in longiltudinal
directicn of blade

z _
= !Y dm /m Axial radii of gyration
4 (mass integral) of a
profile or blade cross
a Ig’ dm [/ m section
3
] * 2
o tm: + img = Polar radius of gyration

(mass integral)

s Mcdulus of elasticlty
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& Shear modulus

- I €?dF = Pirst principal moment of inertia of
a cross section; cf. ip

s I n(n-ef) dF

® second principal moment of
inertia
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= St. Venant's torsion moment of inertia

= Aerodynamic force in y direction per unit of
length of blade

s Aerodynamic force in z direction per unit of
length of blade

Aerodynamic moment about the elastic axis per
unit of length

= Bending moment about y and z axes
s Shear force in y and z directions

s Abbreviations, see Eq. (3.2)

= Abbreviations, see remark following Eq. (L.23)

« Lo

s Aobreviations, see Eq. (5.31)
= Abbreviations, see Eq. (£.5)

= Abbreviations, see Eq. (6.7)

s Force 1n radial direction due to all centrifugal
forces between x and blade tip

= Angular velocity of rotor rotation
s Angular velocity of j-th natural vibration

8 Time function of j-th natural moue in forced
vibration

® j.-th natural vibration
® i-th natural mode

® Counting indices
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NU
4+.Mp (2.Mp)
1. Mg (2.Mg)
1.M; (2.M,)

NB

Number of rotor blades
Blade chord
6y at x = 0.7(R - a), without cyclic blade

control

Measure of linear blade twist (difference
between 6, at blade tip and 6, at blade root
in purely linear twist)

cos Y1~ and sin ypi- components of cyclic
blade control
BRlade azimuthal angle

Flight velocity in direction of rotor axis,
positive downward

Induced wind speed (downwash) in the rotor
plane, in the direction of the rotor axis,
positive downward

Flight velocity perpendicular to rotor axis,
positive forward

The abscissa x|(R - 2), out to which 1lift 1s
to be present (measure of peripheral drop)

Air density

Number of rotatirns about rotor axis

' First (second) natural flapping mode

Pirst (second) natural swiveling mcde
First (second) natural torsion mode
0(1): the coordinate system 1s (is not)

rotated through the flapping angle
Rp1(t) calculated in advance
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CALCULATICN OF THE FLAPWISE BENDING, EDGEWISE LENDING,
AND TORSIONAL VIBRATIONS OF ROTOR BLADES WITH COUPLED
NATURAL MODES AND FREQUENCIES

H. Oette,

German Research and Experimental Laboratory for Air and
Space Flight, Institute for Rotary Wing Alrcraft, Stuttgart

1. Introduction

The natural mode method is particularly well suited for cal-
culating force vibraticns of complicated systems. In this method,
the deflection at any time is the result of superimposing d4if-
ferent natural mocdes, each with its own individual factor qi,
i=1, ..., n. Through appropriate selectlon of qj through qp,
any arbitrary deflection can be represented (for n » «) or
aporoximated, the precision increasing rapidly with n.

Hence, the degrees of freedom possessed by the vibrating
system are to be the time-dependent functions ¢ (t). In other
words, the degrees of freedom are transformed by a rule (Y¥E,zZE,
8g)(x,t) » q(i,t). The natural modes depending only on locaticn,
which consists of the three functions ygi(x), zZgi1(x), and Ogi(x)
for rotor vibrations in the flapwise, edgewlse and torsion direc-
tions, and the associated natural frequencies vi are assumed to
be known. They are best calculated by a segment method (Myklestad
method, multihinge articulated blade technique, matrix theory of
statics and dynamics). To each natural mode 1s assigned a
generalized mass (see the denominators of Equations (5.8), (5.21),
(5.29), etc.), which can also be taken as known, since it can be
calculated in advance with the aid cf the natural modes. The
natural modes, natural frequencies, and generallzed masses in-
corporate all the mechanical prorsrties of the blade, such as
rigidities, mass distribution, rate of revolution of the rotor,
boundary conditions, built-in torsion, etc. 1n compressed (trans-
formed) form, so that the vibration calculation is correspondingly
simple.

If the forced oscillations were to be calculated with one of
the segment methods, the number of degrees of freedom which would
have to be taken into account in order to obtain the same accuracy
would be much larger than the number n mentioned above. This

I\

number would be at least equal to the number of segments, nultiplied

by the number of degrees of freedom, 1l.e. by 3 in the case of
flapwise bending, edgewlse bending, and torsilon.

¥ Numbers in the margin 1lndicate pagination 1In the foreisn text.




The calec:lation of forced oscillations using the Galerkln
method or related techniques is of less interest these days, since
the natural modes and frequenciles can be calculated, and since the
natural-mode method works quite well in the present work, even
when the problems are very difficult. Hence, in a vibration cal-
culation, the Galerkin method shculd requlre more numerical com=-
putations and provide less accurate results, even though the
number of input functions is the same.

2. Symbols [see pp. iv-vi]
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Fig. 2.1. Gecmetry of the rotor blade.

Key: a. Stress axls
b. Center-of-gravity axis
c., Elastice axis
d. Rotor axis
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. Differentlal Equations and Natural Vibrations

3
3.1. Fundamental Differential Equations

We wish to treat different types of differential equations.
We will demonstrate the basic features of the natural-mode
method using the differential equation for pure flapwise bending

(EI2g)"= (Reze)+m'Ze = 2'(x,t, 2¢) (3.1)

The transition to coupled vibrations can be conveniently depicted
using coupled flapwise and edgewise bending

(ETcye)'+ (ELoze )"~ (R ye '+ ' Je-weo m'yg = Y'(x,t,Ze)
Eloyl)'+ (Elszd) - Bezbi+m'ze  « = Z'lc,t,2)
(3.2)

EI, = EI,sin? &,+EI, cos® &,
¢TI TummmmE o El= (E1,-E1,)sin 9, c0s 8,

EIS = EI1 0052 'ﬁ‘u*' EI; Sinz'a'u

The flatter calculation uses the flapwlise-bending and torsion
degrees of freedom in general. Therefore, we also work with

(EIZ:)"(px;es ﬁscosm'-(&,z;)'*m'irm'lss@hCOS By =2'(x,t,2¢ 5 i'&:)
~[(6T+B, iF) %]~ Rperze cos &, + o mi (img ~imy ) & cos 2, (3.3)
+m irr?;g}.'m' leg Zg cos Oy = M'(x,t,i;,’&;,@‘e)

Finally, the most preclse representation -~ which, however, is also
the most arduous one -- with the three degrees of freedom yp,
2g and 6 will be considered:

N
-
n

I



[EI(, Ve' *Eloz: +Bp e G sind,- 532191; e cosx‘}u]“-(P" Ye )

N
o
(8%

- el [m'leg (x+a) T sin ¥,)'-oes mi'les O sin 9,-cgdm'yrmie+mile Sy sin

w Y (X8, Ve 1261 0) + (P 2 08 By)'- el [m'tes(x +o)w5\9u]'+w§m'(e.-lescosﬁu)

Eloy, +Elsz¢-Per S cos 9, EB, & O sin 9, (R, z¢ )
+ g2 [m'les (x+0) O cos 8]+’ Zg-rmileg G cos B,

=2' (%t ¥e 1 2e1 O ‘9;) + (P epsin \9u)"°3R:[m‘lEs(x +a)sin '&u]' (3.4)

~[(6T+R, 17 +EB, 8,%)8; ~EB, Sy (ye cos B,+zf sin9y)]
- Beer (zécosﬂ;,-y; sin §,)-wg? rm'les (x+al(z¢ 05 %~ Ye sin®,)-cweam'leg Ye sind,
+ 02 M (imeg -Ump)cos2 8,-lgsencos D, | O+ min S+ les (Jesin B,-Zecos %)

= M'(x,t g 26,0 )+ (Ree 1 S ) ~cop ! [(im¢ -img )sin &, co8 Oy-leseasin )

Equations (3.1) through (3.4) are taken from the work of
Houbolt-Brooks [1], where x has been replaced by (x + a) because
we start the x axis at the flapping hinge. Tn Chapter 6, we will
deal with a system of equations which 1s even more general than
(3.4). 1In Equations (3.1) through (3.3), the unused degrees of
freedom are set equal to zero, along with come smaller quantitiles,
when neglecting the latter 1s consistent with neglecting the
particular degrees of freedom. Let Y', Z' and M' be the excita-
tion funetions. Y',Z' = force in y and 2z directions per unit of
length, and M' = moment about the x axls per unlt of length. They
are to contain the aerodynamic loads including the changes in
the latter induced by blade vibrations. If needed, the inertial
forces due to the gravitational acceleration g and the motion of
the x-y=-z coordinate system can also be included, e.g. when the
1atter accompanies the flapping motion (see Ch. 6).

The original unknowns yp, 2§ and Oy stlll appear in the ex- ay

citation functions. This 1s because there 1s no point in putting
them all on the left side and incorporating them in the natural-
vibration calculation, even in the rare cases in whiech thils 1s
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posslble. For this reason, Y', Z' and M' cannot rcally be called
perturbation functlons. Nevertheless, the unknowns on the right
side are stlll dependent variables, functions of tlie q1. For
example, the Runge-Kutts method for stepwlse solutlon of differen-
tial equatlons works not only (cf. Eg. (5.8)) for 44 = -vq-aq + f(t),
but also for 44 = =-v42ay + £(t,q7,92,...,41,42,...). Iteration

also works for f(...d;,4p,...). Iterative solutions are possible
even for f(...47,95,...) and higher derivatives, when the influence
of § ete. is sufficlently small.

Strictly speaking, the unknowns influence the excitatlon
functions Y', 2' and M' in very many ways. However, 1in our des-
cription of the functional relationships, we will stick to the
most important influences. For example, in Eq. (3.2), Zp occurs
in Z' and Y' because of its influence on the angle a of attack.
Although they play a certain role via their influence on the rela-
tive airspeed or on &, the variables ygp and Zp are suppressed.

Aside from the excitation functions, certain other terms
ccecur on the right side of Eq. (3.4). They come from the centri-
fugal force field, and induce a kind of presiress on the system

with constant yp, 2g and 6 values, upon which further deflectiocns
are superimpose%.

3.2. Natural Vibrations

The natural vibrations corresponding to Eqs. (3.1) through
(3.4) can be calculated in approximation, but essentially with
arbitrary accuracy, by means of a segment method. The mulcihinge
articulated blade method calculation has reen worked out, pro-
grammed and tested on numerical examples for all these cases.

The computing time on the IBM 1130 of the DFVLR in Stuttgart is
only a few minutes in any case. The program delivers the natural
modes numerically as sequences of points, through which a solld
curve can then be drawn, but this procedure is normally not
necessary. Instead, when e.g. the natural mode 1s to be used 1n
an integration, the integral will be converted to a sum and added
up over the sequence of points. Nevertheless, we will continue
to speak of functions (written in closed form), integrals, etc.
because this simplifies the terminology.

Let the natural vibraticns of Eq. (3.1) and thus its solutions
for the case in which the right e¢lde vanlshes, be

= tvit P =
zg;(x‘.t)szai(x)-etl & 1,2,3... (3.5)
* = Eigensolution;
= Natural modes;
v = Natural frequency (real)

1

\J1

3
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Let the colutions of Eq. (3.2) be

* -

yE YQ
(x t) = (x)-evat 4 =1,2,3...

Z¢

(3.6)

)
when the right side vanlshes. Since the blade can vibrate in two
directions, the eigensolution 1in this case consists of two func-

tions of x and t, and the natural mode accordingly consists of
two functions of x, wnich we will write as a vector because of

their relationship.

Analogously the soluticns of Eq. (3.3) when the right side
vanishes are i

z|" I
(x,t) = (x)-etVit  j=1,2,3... (3.7)

s 3);

The solutions of Eq. (3.4) when the right sides vanlsh are

Ye | Ye . |

2| (x. )= |Z (x)-evit =123 (3.8) |

% li Ve ly !
4. Orthogonallity Relations /16

4.1. Orthogonallty Relation for Uncoupled Flapwise Bending

Later on in the calculations, we will require sone orthogonal-
ity relocions. Ve will therefore derive them in order for
Eqs. (3.5) through (3.8). zey* from Lq. (3.5) satisfies Eq.
(3..) when 2' = 0 there, l.e.

(EIzq")“"pxrzs;l)"“m"z‘g; =0 j=1,23... (4.1)

Eq. (3.5) then implies




I (P -vim'zge0 G =123 (h.2)

Yor J = p, and J = q, Eq. (4.2) becomes

(EI Eip“)‘ - (pxF zEpl )l - szm' EEp= 0
(4.32)
(EI.Z-E;)“' - (po -izqi)l - qu m' ZEQ- 0

These equations are multipllied by qu and zgp, and integrated
over the length of the blade, and then one is subtracted from the
other,

Ra Ra RA
[E12¢0)"Ze, dx~[(E1Zcq ) Zep 6 = [{Rue Zep) Zeg 6X°
o 0 0
(4.1)
Ra ?A

+J((F;F§gé)'igp dx= (v,z—qu)l m'Ze, Zg, dx
0

We now wish to show that the left side of Eq. (4.4) 1s equal
to zero. Integrating by parts once and then twice ylelds

R‘ RA R‘
[o'odx = [ab] -{ ab'dx
) 0 o
(4.5)

Ra R P R R R
lo'b dx = [o'b]o dx'-!’ a'b'dx = [c:x'b]"--[cb']o +£ ab' dx

Integrating the first two expressions in Eq. (4.4) by parts
twice, and the two following terms once, we obtailn

[(E12¢)) 2eq E 126y Beo-(E13¢) Ze* E1Zeg Zep)
(4.6)
- )= = iI= fa 2 2 i 'z =
- [px;-zip 2eq " Pir Zgq zip]o - (Vp “Vq )! m Zg, 254dx
(4]

N
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Now on the left side of the equatlon remaln only expressions
tne value of which at the root and tip of the blade are to be
subtracted from one another. It can be shown that all these values
are zero, using the boundary conditions. It 1s well known that
the bending moment and the shear force 1n the z-direction satisfy

M= Elz' @ =-M4Bzpm (L2 *Re! 6. 7)

M, Q and Pyp vanish at the tip of the blade. Therefore, the
expressions in brackets in Eq. (4.6) are equal to zero for
X = Rp. At the root of the blade, 2zp and elther M or zgp' vanish.
Cases apparently incompatible with tgis are easy to incorporate j
into the system. For example, if the flapping hinge is spring 3
loaded, the beginning of the blades 1is simply assumed to be ahead
of this hinge (to the left of 1t in Fig. 2.1). If the hinge 1is ;
equipped with damping, we omit the damping in this case, but put ;
1
i

a corresponding 2zg'-dependent pair of forces on the right side
of Eq. (3.1). Eence the expressions on the left in Eq. (4.6)
are zero for x = 0 as well, and we obtain

m'iEp iiqu=0 for Vp* Vg (b,8)

The latter inequality can be replaced by p # q unless Vp = Vg
(which 1s hardly conceivable).

L

4,2, Orthogonality Relation for Coupled Flapwise and Edgewise /18
Bending

In analogous fashion, we wish to formulate an orthogonallty
relation for the natural modes occurring in Eq. (3.6). By defini-
tion, ygj* and ZEJ* from Eq. (3.6) satisfy the system of equations

(E IC ij")' + (Elo 255“). "(R(Py::‘)""m.'yli;-w‘t:m'yt; =0

PP R

(h.9)

(ELo yey ") +(ELsze; " )'~ (Rezg;) +m'Ze; -0 |

j=1,2,3...




With Eq. (3.6), we obtaln

- N\ - -
(EI‘ij )+ (ELZ;; '-‘pryga'l)‘-(V52+C‘)R3)m‘952'=0

(EIO yE;). + (Elsisjn)“"(ab‘isj')"' Vézmliga' = ( (4.16)
i=1,2,3...
For j = p and J = Q, (4.10) becomes
(EIC-Y-E,,")“ + (Eloispu)"'(prga;:)" (sz + (—Okoz)miys, =0
(ELo%e," )" + (€12, )~ (PZen)'- Vo m'Zee =0 (4.11)

(EICYE: e (Eloisq")u' (prya: - (V: + wgf.)m'ig,, -0
[E1o%d) * (ElsZeq)'~(PrZegl- vamZey, = 0

_ We multiply the first equation with VEqs the second with
Zpqs The third with -YEp» and the fourth with -zgp, then add the
four equations, and integrate over the length of I‘éhe blade.

~
=
\O

|

Ra
[(ETcTen) Te + ET0Te) Zqm (ELe Feg ) Ve (EToTeq) Zeo
]

+([E Ioze,:)'95,;(EIsie;)‘isq—(eroig:)'ve,-(Elsa;)'zep

- (pxrye;»')' yﬁq-(pﬂ' 2 Ep'). Zggt (Pes 5754) YEP+ (P EE;)'isp]dx (4.12)
Ra

- (V:‘V:) I m' (YEp ggq+ ztpiﬁq) dx
0

The terms on the left side will again be integrated once
or twice by parts, using Eq. (4.5). The result 1is

\O
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[(ETc 5,115, * (ELoTey) Zeqm (ETcTia) Fepm(EToFe) Zep

*EloZep ) Teg * (ElsZe, ) Zeg~ (EToZeq ) Tep=(ETs Zeq ) Zep

~Ele¥ep Jeo = EloVep Zeq* ElcTeq Jip* EloYeq Zep

~EloZ¢. Yeq = ElsZep Zeq+ EloZeq Jpp + ElsZeq Zep (4.13)

R
-1 = = | = - - = ! = A
-Rr Yep Yeq = Pir Zep Zeo* Pir Yeq Yeo * Pur Zeq Zsp]
Ra

=(va-vq) ‘[ M'(Tep Teq* Zep Zeq) dx

°

The integrals on the left side have disappeared. This can
be attributed to a certain symmetry in Eq. (4.9). The coupling
terms, i.e. the term with 2gi:¥ in the first equaticn and the
term with ygs* in the second equation have the same form. In
problems of %his type, this symmetry must always be present, since
withdrawn from one type of vibration by a coupling effect must all
be delivered to another type ¢f vibration. Now, using the
boundary conditions, it can agailn be shown that the expressions
on the left side of Eq. (4.13) disappear. We have taken the for- /20
mulas for the bending moments and the shear forces from the work
of Houbolt and Brocks [1]. Using the abbreviations from Eq. (3.2)
and neglecting the terms mentioned in the remark to Eq. (3.4),
we obtain: |

Mz = Elcye + EIOZ;

My = Eloye *+ Elsz¢
(4.14)

Qy = ~Mz+Rye-m, =~ (EI ye I-(Eloze [+ Pe e ~coeam lgsx cos &,
Qz = 'M;*pxs Zs""—f‘y" '(EIoYE')" (EIsZZ)'+P.s ZE‘-CQRE;"; lgs X sin 9,

At the tip of the blade, Mg, My, Qys Qus Pyrs, and m' vanish.
Therefore, the sum ot all the expressions in the brackets in
Eq. (4.13) 1s zero for x = Ry. At the root of the blade, yj,
2g, and normally My or yp' as well as My or zg* will vanish.
Hence, the exprcssions In the brackets ¥n Eq. (#.13) will sum to
zero for x = 0 as well, as long as one of the following cases
applies: rlgid restraint at ends, only flapplng hinge, only
swivel hinge, and both hinges. Other cases, ¢.r. one hinge with

10



inclined axis, lead to the same results by a somewhat different
route. Eq. (4.,13) then becomes

L

4.3, Orthogonality Relation for Coupled Flapwise Bending and
Torsion

The next task is to formulate our orthogonality relation for
the natural modes introduced in Eq. (3.7). By definition, ZEJ*
and QEJ* satisfy the system of equations

~
n
’_l

I ‘a # -
(L2 - BB eon ) -Beaeg o -rmtes Bjeos =0

J. 2 . 2\Q* (4.16)
"[(G'I*pxp 1:)\?‘5;}"3‘; Cf 253‘(.0513‘“+COR£ m'(lmg"£mq)\9qcos 2'9;,

+m’i,§ :é;.;"m'lgsia; COS‘\9U =0
j, = 4 '2 ‘3 cer

With Eq. (3.7), this becomes
(E12¢; )~ (Reer ’-255 cos O (PerZes ) -vim Zeg# 3 miles Teyeos =0

- [(6T+ Pyie )éq']'-Px;eFiE; cos B+ cogim!(img ~imp) Be;c08 29y Ty

'V; m‘tnf '553*' Va'z m'les 25: Ccos Ou =0

§.1'2'3...

For J = p and § = q, Eq. (4.17) becomes

11
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(E 125: )= (Pirer Begc0s Oy /- (Re Ze,) - vim Zgpt ve m'lgsﬁgpcosﬁ*u- 0
(E1Z¢q)"~(Re e g cos o)~ (PreZeq)- Ve Zgg* Ve migsDy, 05 9;=0

[(G‘.T+P,,,-t; )5 ] PererZep 05,  +00, 2 (im g =ima ) O, 052 B, (1.18)
~vimim \&Ep-r ve m'les Zgpcos By = 0

[(GT +Pieis )ﬁgq] Pyt €F Zgp 08 O, h+Gogern (I.ms Lmq)&eqcos? %,

- Vp mlim '&Eq’*’ Vq m LES qu cos "9'

We multiply the first equation by th, the second by -Egp,
the third by 6gp,, and the fourth by -8gp, add these four equa-
tions, and inte%r'ate over the length of the blade.

/22
Ra
- - - ot | .
l{(EIzE;)‘ZEq-(EIZE: Zeo~ (Pyr r Op €08 i)' Zeg* (Rrr e Fpgcos i) Ze,
0
- = = Ju= oad 118 LT L2213 1%
~(ReZep) Zeg* (PrrZeq) Ze,[(6T+ 4129 | Ogq +|(6T+ B if )ﬁ‘iq']loip
= xFe;COS'&u (252659'253559)} dx = (4.19)
(Vp Vq )I [igp iEq- lES coS ﬁu(igpﬁ“"'igq\ EP}"""? ﬁEP 'qu]dx
The terms on the left slde are integrated by parts twice,
once, or not at all in accordance with Eq. {4.5). We obtain
[E12e0) 24~ (E12¢;) 26, (Per €r Bep C05 By Zeg *(ReerBiq cos i) Zep
EIZEP ZEQ +(EIqu ZEP+ px es\g'EngqCOS'e' Fe;ﬁ‘zq ZEP COS\S’
(L.20)

~Rr Zep Zeq * RrZeq 2¢ - (6T+Reif )%, o * (6T +Be if {) B, ’3sp]
R \ _

(V:"V:)[ m [igp 259' lgg COS 19'“ (25', \95“"' ieq'&gp)‘*tm '&EPIGEQ]
0
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The integrals on the left side bave again dis-ppeared, cf.
remark following Eq. (4.13). 1In thls case too, with the aid cf
the boundary conditions, it can be shown that the expressions on
the left side of Eq. (4.20) vanish. Agaln by Houbolt-Brooks [1]
and neglecting the appropriate terms in this case, the bending
moment 1s

My = EI ¢ ~Prer(sin 9+ 9 cos 8,) (h.21)

At the root of the blade, we may assume zg = 0 and g = 0
as well as zg' = 0 or M, = 0 and 8y = O, the latter because the
axis of the flapping hinge must be the principal axis and the
axis of symmetry of the blade cross section at the point concerned.
Hence, when x = 0, the quantities 2zg, O as well as zg' or Elzg",
and thus the entire expression in hrackets in Eq. (4.20), vanish.
The fact that this expression vanishes for x = Rp as well will be
proved this time not via moments and shear forces, but using EI, :
Pyp and CJ. Namely, these quantities and all their derivatives /23 :
vanish at x = Ry (or at x = Rp + s wlth s> + 0). Eq. (4.20)
then becomes

t a - - . -— -
{m‘ [i Ep EEQ-lES oS ﬁu (Espﬁfq+zeQﬁEp)+ I.ns ﬁspﬁiq}dx =0

for Vp ¥ Vg

4.4. Orthogonality Relation for Coupled Flapwise Bending, Edgrwise
Bending, and Torsion

Now the orthogonality relation for the natural modes defined
in E~. (3.8) will be formulated. With the right sides vanishilng,
yEJ*, zpj ¥ and égj* satisfy Eq. (3.4), so

wd o,
f (dde; 'ZEE [ ﬁg;) "’m' 'y;; +m'l5$&£j sin ﬁ'u =0

amian

* 3 5 I, 2
9 (dl ys; ' zEj ! ‘&g;) + m' ZE; 'm'lgs \&E; cos Q_, =0 ( 3)

e 2% . . 0 @& -
h (d,yE; 265 &E;‘) +m1,,";\95;+m'les(ye’;sln&u-z;iwsﬁu)-0




The abbreviations f, g, and h are chtalned by comparing
Eq. (4.23) with the left side of Eq. (3.4). The symbol d means
"differentiation by x." Since f, g, and h are llnear in yEJ*,
zg3* and 8gj*, we obtaln from Eq. (4,23) with Eq. (3.8)

- - a 2 1= _ 2 rt ein O =0
f (dnysi JZEjI'&gj) = Vi MY Vamlisﬂszsm u
- = < PR+ 2 S =0
g (d¥e; 1 Ze5 1 653) ~vymzg ¥ Vamlisﬁsaws Oy (.2
- 2 . 2% 2 - . -5 . =
h (d,yEé 1 Zg; ,ﬁeé) -vém'l,.ﬁﬁsa-- vémlgs(ysésmﬁu zgacosﬁu) 0
For J = p and J = q, Eq. (4.21) becomes
= B 2 . 2 -, -
= 3 2 = . 2 1, =
2 . 2% 2 - e - =
h(d 0959 1 iep N SEP\—VP m'\mﬁEP-VP mles(yEpsm 19.,"259005‘9.,\ 0
o 2 . 2 = . (L; .25)
fld [ 9591 ifql ﬁgqm-vq,myeq = Vqm lgs‘\?eq,ﬂn'au =
- = 3 2 2 1 = -
h(d¥eq 1 Zcq 9,)- Varm'in 0" Vo 1 Lgg{J, sin OyZggcosB) = 0
In this case, we multiply through by YEq, 'z'Eq, é-Eq’ "37Ep’

"EE » and -6Ep, then add all six equatlons, integrate over the
length of the blade, and obtailn

Ry
([Teq (e 01 Zep 1 o) =g, A Teg 1 2o 1 B
[+

+2gq°0(d 1 ep 1 Zgp 1 )= 2,7 9(01 g1 2 1 O, )
- e e (4.26)
O 'hld s Tep 1 Zep 1 O, )~ B h(d,y“,z” ,5“)] dx
Ra
2 - - o= . <
=(vp -vg)-[m [ysp Yeq ™ ZepZeq* im Bip Big
0

* e (T, Og* Teq Bep) SN0 les(Zep Big * Zeq Bip) cos B ax
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Writing out the functions f, g, and h explicity, Eq. (4.26)
becomes

R
j[sxc Yep*ELo Zep + Pip €5 Byp sin®, ~EB, 8, &, cos 8, ]' ¥, o /25
%‘

+

A
] Elc Seo *Elo Zeq * Bes €5 BgqsinO,~EB, & Siq cos
Y

€A
Elo¥ea+Els Zeo~ Pir ee B, c0s 0, -EB, Y, 13;;, s‘mﬁu]' Zgq OX

0
£

-] [EloYeqtElsZeq - Prrer 5“00519“ ~EB, % &g sind,
0
(67+ By i+ EB 8 )Byp-EB, 0 (T cos O+ 2, s'mﬁu)]' By, O

[(63’+ B if+ EB, \‘}Jz)@gq'- EB, 9, (yeécos Gyt Zeg si.nﬁu)]' B o Ox

i
|

o]
Ra
Ra
0

T
0
®a
y
0

ReeTeq )+ ord [m'les(x+a)F, sin B *comm lgségpsmeu*‘ﬁ)gin'\'gep}y“dx

(4.27)

* {(er 759')'* el [m‘les (x+ °)§Eq55~n'&u]l* cramiles -6'&,51" Ot ond m'YEQ}yEPdX

|
l
|
|
|

+{~(R¢ Zep)'t o [m‘lgs (x+a) 135P cosﬂ‘u]'} Zeq dx

(
! = |
- {-('8,5554)'+ el [m'les(x +a) Ogq c059;] } Ze, dx
Ry
- [PxFeF(EE;wS&u-YE;sin&quRf 'r;lES(x*G)(ii;mﬁu-gs;s"m,u)"wkfm'le‘sgepsm’}u]&qu

o
Ra

+s Peer(Zeg 050 Tiq smou)m,%rﬁtes(x+u](zgws9u-ye;san&u)+mgrﬁtesyhsinau]'e'e,dx
0

e

= right side of Eq. (4.26).

In the last two brackets, one expression was omitted in each /26
case, since these two expressions obviously cancel each other.
Continuing, the underlined expressions also cancel each other
out. Of the remalning terms, those in lines 1 through 4 are
integrated by parts twice, and those 1n lines 5 through 10 once,
in accordance with Eq. (4.5). This eliminates all the terms pre-
ceded by integral slgns, and we obtaln:

14




{[ELcTep* EloZep+ Reeri,sind,-EB,8) 8 cos 8| ¥;,

-[E1 Yoy tEloZeqgt PeerOgosind,~EB, 8, G, cosau]’gEP

+[EloYep*EIsZep=Prrer Dy 080, EB, 908, sin %, ] 2,
~[EloFey *ElsZeq— Perer Oy cOSOTEB,D, Seasindy]Ze,

~[ElcTep +EloZey + R erSp sinymEB, 0 B p 089, Fiq !

+[ELcTeq +EToZeh* Bepep g, sin9,~EB, 0. 8 cos 8] ‘u

~~
N ang
.
ro
0
~—r

+

[
~[EloYes +ElsZe~ B 06 8¢, 08 9,EB, &, T psin g, | 26,
[ELo¥ey +ELsZsq~ Py er O, o5 ,-EB, 8!8l sin, | Ze,
~[(6T+Beif +EB, B2 B -EB, B (Fencos it Zepsind,) |Oeq
+[(6T+Rri 2+ By 8 ) Bea-EB, D, (Foo cos 8+ Zey sin 0,3,

[P Fep* ea s (x+0) B p5in 8, JFeq * [Pee Teqcore M leslx+) Bggsind, g,

' a - - It -~ QA
'[Pxf ey CogeM'lgs x ‘0)‘95;': cos eu] Zgqt [pxF Zeq* e m'lES(X+°)ﬁEQwSQJ]ZEp}
0

= right side of Eq. (4.26)

It 1s highly reasonable to assume that the left side of /27
Eq. (1.28) will disappear just like those in Egs. (h.6), (b4.13),
and (4.20). Since the expression in wavy brackets vanishes at
x = 0, we obtaln from yg = 2p = 0g = yp' = z2p' = 0 for x = 0 in
the case of rigld restraint at the ends. For a flapping or
swivel hinge, it will bte -- instead of zp' and yg' -- the corres-
ponding expressions in brackets in line & through 8 of Eq. (4.28),
the ones multiplied by zg' or yr', which are egual to cero.
According to Houboit and Brooks [1], these square-bracketed ex-
presslons constitute the bending moments about the y and © axes,
apart from a cons:ant term Pyp ep sin 04 or Pyp ep cosn

0y .
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However, in the case of the flapping hinge, we may assume 0y = 0
for x = 0 by the remark following Eq. (4.21), and 1n the case of
the swivel hinge, ep = 0 for x = 0.

At the tlp of the blade, the quantities EIl., EIg, Elg, GJ,
Pyp, EB1, EBp, and m' vanish along with all their derivatives.,
The expression in wavy brackets therefore vanishes for x = Rp as
well, so that the left slde of Eq. (4,28) turns out to be
jdentically zero. The desired orthogonality condition then reads

Fa

- - = = .2
J M Ve, Yeq* Zep Zeq* Im 1‘}59 1954
0

. T oae B\ S (4.29)
+les(Yep g * Jeq Fplsindu- les(Zip%e* Zeo Ve P)coseu]dx =0

for
Ve ¥ Vg

Perhaps the orthogonallty conditions can be derivec .n a more
general and elegant fashion from (virtual) work principles, e.g.
by the Ritz method. The boundary conditions would then have the
simple and general form "boundary work = zero."

5. Methods of Solution

5.1. Method of Solution for Uncoupled Flapwise Bending

We must solve Eq. (3.1):
(EIZE")“‘(R;FZE')"""":’:E = Z (X ,t f .Zg) (5.1)

For thils purpose, we use the trial solution discussed in Chapter 1:

zelxit) = 2 Zg o () (5.2)

Zp4 are the (known) natural modes, and qj the unknown func-
tions of time. Using Eq. (5.2), we obtaln from Eq. (5.1):

17
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%[(EIEE;)"%" (Prr Ze3)'a ¥ m'ze; 851 = 2'(x, b, 2¢) (5.3)
Now we use Eq. (4.2) for the natural modes and frequencles.
EHQWﬁ%hwwﬁmiq=0 d=1,2,3... (5.14)

We multiply by qj and sum from J = 1 to J = n:

n
2 [(E12¢) 0~ (P Zej) 43~ vy m'Ze; 93] = O (5.5)

Subtracting Eq. (5.5) from Eq. (5.3), we obtain

| = [

n (.
2m' 2y (450 v ag) = 2kt %) (5.6)

We multiply by zgy and integrate over the blade

n RA RA _
?_1(63'*\’52%” m'Zg 2g; dx = [ 2'(x b, Z¢) Zec dx (5.7)
° 0

Because of the orthogonality condition (4.8), all terms 1n
the sum on the left side of Eq. (5.7) vanish except for the one
with J = i. Hence, Eq. (5.7) becomes

~
n

Ry
22'(&*-25)251"" (5.8)

Ra \
fm ZE? dx
0

This equation has already appeared 1n DFVLR Report 98 by
Just and Storm [2]. Applying it for 1 = 1 through n, we obtain
n differential equations to calculate the n functions qi(t) ==
in Eq. (5.2), qj(t). The differential equations are coupled to
one another via“Z', 1n which zg 1s to be expressed in terms of

18
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the qj by Eq. (5.2)., In general, these equations can be solved
only numerlcally, particularly 1f the cyz-a curve is nonlinear.

If the c.-o curve is linear, Z' has a form which is of the

degree of dif?‘iculty of Eq. (5.9). In thls case, an analytic
solution is conceivable, and we will discuss this topic briefly.

Z'(x,t, 2¢) = a(x)sin Wget + b (x) {1+ A sin e t) Z¢ (5.9)

Hence, the rotor blade 1s acted on by an excitation term of
the usual type, and also by damping which is a function of the
blade-rotation angle and zg. Thils damping has been mentioned in
the work of H. Schmidt [3], p. 120, ‘q. (15+1). Egs. (5.8) and

(5.9) imply

fa RA
]Q(x)zﬁdx jb(x).ZE-Z-E'dX
., ? . 3 . , \
Qt*‘vl Qi= oﬂ‘ - 2 'SLHQ)RQt"' °g. ; (1+A51nwg°t) (5 10)
frmze dx m Zgl dx
° 0
j
For zg, we use Eq. (5.2), and obtain |
i
R 1:
. 2 ) - ) n gb(x)fsé Zg dx *
Gi+vig = aisincg,t+(1+asinwe )2 §;; (5.11)
‘-1 g{m‘iefdx . i
i
i
°r /30
e . n . 2 .
q'i'(1+AS|.n w%t)?ﬂ ﬁi:;%*"& Q't"“i&nwggt (5.12)
with
R‘ RA - - (
{a(x)Z¢; dx Lblx]zﬁzqu (5.13)
0 N - M
o= S by =
I m'ZE? dx 2"" Zgt dx
° i
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Eg. (5.12) can be written out for 1 =1, 2, 3, «++s . The
resulting system of coupled ordinary differential equatlions hss
time-dependent coefficilents for the di. Tt can be solved stepwlse,
e.g. by the Runge-Kutta method, or also by using harmonic trial
solutions for the qi. In that case, the result 1s m.n algebralc
equations with m.n Junknowns, where m is the number of harmonics
taken into accoun'., and n the number of natural modes taken 1into
account. The constants a4 and Bij can easily be calculated by
replacing the integrals with sums and substituting in the discrete
values calculated for the natural modes by the segment method.

5.2. Method of Solutlon for Coupled Flapwise and Edgewlise Bending

The equation to be solved in (3.2), which states

(ELey )+ (ETozg)"- (Beye)+ m'Y=corg m'ye = Ykt 2¢)
(5.14)
(EIoYe“)"*' (Elszél)"‘(&FzE‘)'*"“zs = Z'(x,t oie)

For this purpose, we choose a trial solution in the form of
the coupled natural modes

¥e ¥

2

o Ms
N

(xit) = (x)* g, (t) (5.15)

€z

~
(=]

Using Eq. (5.15), we obtain from Eq. (5.14):

31 Loy Ba oy g -oudnSa Y2

(5.16)
2"1[(510?5;)“%+ (EISEE;)'%"msi’s;h}*”{ieﬁj ] -2{x b, 2)
’.

Eq. (4.10) states

20




(E1cTe) )"+ EToZe] (P Fej - Vi corg I = 0

(5.17)
Elo¥e;")' + [Elszef ) (P Zey)-vimzgy =0
We multiply by qJ and sum from J = 1 to J =n
n
2 E 156} a;+ETo2eMo;-{ReTe oyt rcoed o = 0
. (5.18)
E[(EIo_Ys;}'Qi*(EIsfs;r%‘(prrie;')b(é-vf m2Zg o] =0
If Eq. (5.18) i1s subtracted from (5.16), the remainder is
n
- . 2
524 M BtV ;) = Yi(x, t, 2)
(5.19)

n
= = 2
= MZglive) = 2t 2e)

We multiply through by §Ei or Eﬁi, integrate, and add:
n . Ra fa
. . e = = = vl _
?., (;*vj qé)!m (Ye; Ye;* 262 lox -J[Y'(x it 2603t 2 (%t 2 ) 26 |ox (5.20)
3 .

Because of the orthogonality condition (4.15), all of the /32
terms in the sum on the left side vanish except fur the one with
J = 1. Hence, Eq. (5.20) becomes

?
I‘[Y‘(x,t.iewsﬁl‘(x.t 1Z¢) 2g;] Ox (5.21)

.e 2 ]
GirVidi = °

Ry
é m e+ 2 )
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5.3. Method of Solution for Coupled Flapwise Bending and Torsion

The equation to be solved 1n (3.3). It states

(EIZ E")'- (pXF € '\}E cO0s @u)'- (pXFZE. )'+m'25-m'l55i9£cosﬁu= Z'(x,t,ie ,13'5 ,\35)
- [(67+ Ry 162)8; |- Prer ze"cos O, copZrm(im -img ) S 08 28, (5.22)

'. zo. . . .
+miy Ge-miles Zecos Oy = M'(x, t 2 O, G)
The trial solution in the form of coupled natural modes reads

n 2
(x,t)=3 (x)-a; (t) (5.23)
85 }-1 55

Zg
¥
Using Eq. (5.23), we obtain from Eq. (5.22):

< S > = o T e .
55-1 [(EI 7:; )'Qf(Hsest?gicosﬁu)'qj-(&pzsé‘)‘q,5+m'zgzq5-m'lss\9£5 q,icosa'“]
- Z'x,t,2¢, % ,65)

(5.24)
'5%{-[(67**1’,,; i.F,') 65: ]'Q" px; € Eg; q‘wéﬂu“‘wag m'(imsz "i-m; )35} q‘&,cos 260
+miim 1256'}'_' M'lesie,iié cosﬁu} = M'(x,t, ¢, G :é'e)
Eq. (4.17) states /33
(E Iié)‘-(ﬂ,ﬁ; 5;}005‘&‘ )ll_ (pr 25; )'-vfrﬁi‘-si-vfn{lgs@qcosﬁu -0
(5.25)

- [(63‘4-13,; 9% ;]'-HF e5 2, C0s B, +cop2m(ime- img )9;c052°0,

2 .1 2% 2 - )
'Vé Mim ﬂgj“‘\’é m'.gsz;j 005\9:‘ =0
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We multiply by 93 and sum fror J = 1 to J = n.

n - . - 1
21 [( E1Ze;)q;~ (R er O, cos0y) ;- (R Z¢ )'q,é-v;m';. quiw;m les ;9,05 0, [=0
? 2

S 3 2. 2\& (5.26)
21 {-[(G:r +P,Fif2)13'g;]'qz,-P,FeF Zg q;c0s B, s m (tmé-tm;)ﬂsa.qz.cos 2,
z.

~v;2m inf ﬁiq}ﬁ’fm'lgs Egiqécosﬁu} =0

If Eq. (5.26) 1is subtracted from Eq. (5.2!), the remainder is

n -
5 m'(zsf"gélss cos Ol +via )= 2/ (x, ¢, 2¢, O, O]

(5.27)
e, + 2_s e s ¢
51"‘ (O; im zeglssWSﬁu)(%*ij%)' M'x,t,2g , O, 9)
We multiply through by EE:L or gEi’ integrate, and add:
£(-~* P R‘ |
+v.7q ). 2 P~ Ze 8.+ 9% Ve 28 1
P M %) !m [zit Ze;lescos O, (3 \9'55*2531351)*'#1953‘953]“ (5.28)

[/
) of[z'(x it '25'.&5'&E).ZEC*M‘(x:tlifl‘s‘E léE)'é‘zi]dx

Because of the orthogonality condition (4.22), all terms in /34
sum on the left side vanish except for the one with J = 1.
Therefore, we write:

Ra
it 2e O 8 ) Zet Mt 2e O ) B |d
. ..6( [z!xltlzilal'ai)ZEL+M‘xltlel‘e‘Elﬁ.€) Ei] X (5.29)
HIVG %

6[ m' [2;*2 lgs €035 'e'uigi 5;(’%3 sif ]dX
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5.4, Method of Solution for Coupled Flapwise Bending, Edgewlse

Bending, and Torsion

The equation to be solved is (3.4). With the abbreviations
from Chapter 4, it states

fld ¥e12e )+ mYe + mles e sin®, = Ye'(xit,9e 126, O)
g(d, g Zg )+ m'Ze ~milgs B cos®, = Zelx, b9 2, %) (5.30)
1(de Zer O i T+l (e sind,-Zgcosth )= Ma(x b, 3¢, 2,0 )

At this point, we introduce three other abbreviations:

ye’(x lttyi !ie { ‘e‘ﬁ) = Y'(X ! t |9El 25 ,ﬁg)"(prepcos&u).

- gl [m‘lgs (xm)cosﬁu]'*rcogf m'(ep~lgscos )
Zolx,t 1Je 126, ﬁﬁléi) = Zl(xlt Ve 2g, 9 l'élﬁ)"'(pxl»‘efs'm'&u).‘wki [m'lES("*o)s.‘m}U]‘
(5.31)
Me et Se s 2eo 9 8 ) = M.t e Ze Okt Per 128

~og5 [ limg~imq)sindcost,-Les exsind, ]

Again, we choose a trial solution with coupled natural modes: /35

. ko (5.32)
zg| (x,t) "i% Ze (x)-qé(i)
B [Bels
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Since f, g, and h are linear functions of the unknowns,
Eqs. (5.30) and (5.32) yield:

i%l [f (d IYEj liEj ,'E'gi\ '%4- f'('llyEi oaé-f m'lES 'EEi az S.l.n \9“,]
= Ye'("nt 'S’EI.ZE I.&E)

%1 [g(d,'igi Ze; 1 0yl Oyt m gy Gy les &; G; s 8] (5.33)

3

= ze'(xot lgEliEIﬁE';&E)

n . % ‘a - - . -_ a8

;1 ["‘ ld ey Zej ‘953)' q; +rn'ind Uy m'les(Yg; 5‘”’5u‘zsgc°se‘uh5]
* .
= Melx,t Je: 2 l"i'eﬁ)

Now we multiply Eq. (4.24) with g3 and sum from j=1ton:

n oy -

51[5 (d,YEsz} l'&sj)'(}j'\’;m YEjQi.-ijm‘lEsﬁEjQiSi.n ﬁu] = 0

< T35, 8 Vmaslls . =

if[g(d'yei'zsi'eﬁ) 4 vimzgqtvimiles By g 0089, = 0 (5.34)

n
T. 3. & )n.—00lnl: 28 2 . =
55_1 [h(dde,nze,:ﬁe,) Gi~V; Mim Vg0, v; ""'les@eiﬂ"%‘zﬁc“3u)‘}3]‘°

If Eq. (5.34) is subtracted from Eq. (5.33), the remainder is

/36
" -
51 [m'(ysé#lssﬁqsinﬁu)(dfv:?qé)] - Yg.(x e 2es )
" . (5.35)
52'1 [m (zsi-lgsegjmse'u“q;’ qui)] - Zé(x |t ,gg ,ig,\"s 'éﬁ)
n
: I 2% - . - .
Eq [m (‘m 0Ej+l§sys}sm\?u° lgszgémﬂu)(qé+vgq‘-)]= M.f (x 't lgﬁ 'iE , ﬂf ‘6‘:)
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We multiply through these equatlons by Ygi, Zgi, and Bgg
respectively, integrate from 0 to Rp and add the equations.

Ra
n L — - — — . I a
52 1“‘1“*’:‘2 gl | m'[Te ez 2 Zey  im Vs Oy
* , 0

+les (Ve O3+ Ve O ) sin Gules B g, ieﬁeﬂws’%]dx

R (5.36)
A
= j [Ye' (X,t ljfle lﬁE ) '9Ei+ze' (X | t lgsligsﬁEl‘&E)'in+ Me:(x lt.tSEliilaﬁlﬁE)'eﬁ]dx

v}

Because of the orthogonality condition (4.29), all terms in
the sum on the left side disappear except for the one with J = 1.

Therefore,

. 2
G * VG =
Ra
‘e e ~ . o 2 - ] . 8 It
j[Ye'(x,tde.zs.ﬁe)'.vsﬂe'(x ltaYe'ZElﬁstf’e)',zel*Me("ut:YE:ZE:‘S‘U‘?E)'?&]“ ) (5.37)
0 .
— . ;
-2 =2, 932 - a s = &
I m' [+ 2e*im O +2 lgsyﬁﬂasmﬁu-ZlEszﬁﬁﬁﬁoseu] dx
o .

6. Inclusion of Inertia Due to Extension of the Blade in the /37
Transverse Direction and Bpp-Terms, Particularly Coriolis
Force

v

I i

Fig. 6.1. Undeformed rotor blade with representa-
tive mass dlsplacement imC‘




In the work of Houbolt and Brooks [1l], the torque due tc
angular acceleration and resulting from the extension of the blades
in the transverse directlion were temporarily ignored. These
torques are particularly 1mportant 1in natural vibrations. In
this case, we are particularly interested in the blade extension
in the n-direction, since 1t greatly exceeds that the in z-direc-
tion. We go back in Houbolt and Brooks just to point at which the
Lerms concerned were neglected. The equations for the moments
my; and my now acquire the following additional terms Z when a
less drastic simplification is carried out.

. .2 .
Z(r-l’\z) = -m'.(im;cosz‘&uﬂm: sin m)-yé

-m'~(im§-im.;)51m9uc°519'u' Zg

2 2 Y (6.1)
Z(y) = -m'(imé sin O, * impcosBy)-Ze

=’ (img ~img)sinOycosS,: ¥

Some simplifications have been retained, but they are justi- /38
fiable even under the enhanced accuracy requirements. For
example, NROZZE' and 2wRer are considered small in comparison

with Zg'. This is legitimate for the higher natural frequencies
v with which we are specially concerned in this case, since the
terms are roughly in the proportion wg 2 to 2WR.V to ve., To
clarify Eq. (€.1), we set 8y = ipp = 0, and cbtlir

~— = - [ 2 oo

Z(my) = 0

We will not use this equation further, first because 6, (and
perhaps ipp as well) may be even somewhat larger, and second because
the coefficients of Eq. (6.1) occur more often so that the extra
work in comparison with Eq. (6.2) 1s not very great. At any rate,
in Eq. (6.2), we have an expression which can be ierived very
simply from Fig. 6.1, if the x and y axes are made to ccincide
with the £ and n axes respectively.

Since, according to Houbolt and Brooks, mp' and my' contri-
bute additively to the left sides of the first and second equations
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respectively in Eq. £3.4),
from Eq. (6.1) must be adde

equations 1in (3.4).

deflection due to Bpl
in the 2 deflections.

forces in the y-direction,
This adds a few more terms. We wlll

not bother to derive them a

expansio
but would not involve any fu
each of the additional terms is eas
the abbreviatilons introduced in Egs.
additional te
to the coordinate sys

reads:

the correction terms 2'(my) and Z' (my)
4 on the left to the filrst and secon%

oned the flapplng angle Bpi: The
) should be contained

1dea of the Coriolis
tem 1s rotated

So far, we have not mentl
(with a flapping hinge
In order to get some

the coordinate sys

through an angle of gp1 (%) .
t this point. It would require an

n of the derivation given by Houbolt and Brooks [11],
ndamental difficulties. Furthermore,
y to corprehend. Now, with
(4.23) and (5.31), with the
he additional terms due

rms from Eq. (6.1), and with t
(3.4) now

tem being rotated through B8B1, EQ.

~

|

£(d,¥e Ze O ) +m Y+ Lgs g Sin 9y~ \’_m'(img2 cos Yy +img sin 0} e

+2 Ggem (2¢ Partx Pau ﬁst* Zg ﬁs\"les f‘5m5'm %)

g(d,ye ze, %) +m Zg-m'les $cos9,- [m (ime s‘uf&u»«im;cog 9,2
+m'(.‘mg2'lmr§)5‘m % cos ¥, Ve ]l = Zolx Ve Ze o‘t}e) (6.3)

"m'[Xﬁm*’ 2o 9E Pat Q)Qg (X+°) ﬁst]

hidye lzilﬁz)*‘m'inﬁg'i +mi'lgs (Ye sind,-Zg cos )
=Me X/t Jei2e e B )em ["ﬁm’QWmYe Bar* s (’“0)(5&]155 cos B,

-’ [xPg +togs [x+9) Pay les Ve sin D, + 260gatn (2 Pt xBo P 2t Ballessin®y

rved at this polnt that the centrifugal

It should also ke obse
31 (che factors coS gp1). ToO

tension Pxp agaln depends on B
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simplify things, we wish to omlt the underlined terms in Eq. (6.3).
They are third-order terms, if Bpj, 25, Og, and IES and all their
derivatives are consldered small %or ourth~order terms, when

8, is small as well). Hence, the Bpj-dependence of PxF can be
neglected in the abbreviations f, g, and h as well, If we did not
get rid of these terms, we would have to deal with natural fre-
quencies which depended on Bpl, and therefore on time (the in-
fluence on the natural modes 1is even smaller), or we would have to
insert corresporiding correction terms on the right-hand side, e.g.

(Perye )+ (4 -cosfig) -

The magnitude of this simplificatlon can be diminished by
computing the natural vibrations with the mean value of Bpj.
However, in ordinary cases with ag v 5°, 1t 1s hardly worth 1it.

The dependence of Pyp on Bp1 can easily be taken into account /40
in the abbreviations Y'e, Z'e, and M'e, although there is not much
benefit in this either. Eq. (6.3) now becomes

? . . 2 . 2,02 Vo !
£(d,ye 2¢, 9 )+ rmileg gsindy” [m (tmgc0s Oy +impsin O3

+m'(img2-lm;)sln'&uoo5\9u'z°g' T = Yeo [t JeiZe 1O Peur Pa)
. 2 . 2 26 }u )
sind,+imgos Vul Ze

gld,ve iz v m Ze ~rilgs Secos O, [m (ime
ﬁE'é‘E'ﬁBllaN) (6.4)

ermilim3-im2)sinQycos0ude ]'= Zeelx t i3 2e:

hidyei2e :'e'e)"'m'lw% 3‘5 +rm'lgg (Yesindu- 2gcos ’S‘u)

= Me'e {"ut.ﬂgaie t'&sf‘;}e ' ﬂm-ﬁ’éx)

with
YeolX it Se: 26, % PaysBor) = Ye (it Vei 2, Te)

+2 W, m (2g P +x Mg fssl*zs ﬂ&"les f531 sin )
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ze; (x|t|9EléE|"}s'1§E:ﬂBu?§Bt)= Ze'(xltl.yEliE'ﬁEl&E)

—m'[xfs'm+2wgo$45 P+ cogd (x +°)ﬁst]

Me;(xltlyﬁliElﬁEl é‘sl (38\4'(5&) = Mt‘z(x ltISIEl.ZElﬁEI'&E)

*m' [X?SBL"’QCOR:: Ye Pay+ rd (x+0) g | Les c0s By

(6.5)

We also wish to formulate the orthogonality condition for

Eq. (6.4). We will follow the discussion in Chapter 4, where the

orthogonality condition for Eq. (3.4) was fermulated. Again we
use the natural modes defined in Eq. (3.8), although these modes

will appear somewhat different numerically, since not Eq.

(3.4)

but Eq. (6.4) with a vanishing right side was used to calculate

them. Eq. (4.23) now becomes

Vo ' i . N . f. oo )
f(d, yeg,zE; ,ﬁeg)+my;§ +mlgg ﬁgg sind, =(Mime yg; +Mimo ZE§)=

gldVej i2e 1‘9:;)*""'2&; - m'lgs éggcosﬁu—(m'im, Zg; +Mims Yej) = 0

. .2 »e . v # -
h(d .Ye; ' ZE; ' ﬁe})*m'h: \?fe;*‘m'les (VEE Sm%'Zijsﬁu) 0
With the abbreviations
i, R = . 4 2 . 2 .2
m¢ tmg COs \}u""[m'z sin &u

= (img~img)sinO,cos 9,

v 2 . 2.2 .
img = L'hg SU’”&U +lm?zc052~0u
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Analogously, Eq. (4,24) becomes

Fld, Jez0 Ze;,0;) —vi [m'T; + miles By sind, -(m'iméx‘rs,’*'n'im?isé)'] =0
g(d g ,252,1—953-)-vf[m’255-rn'155\‘) c0s 9, (m'im3Zgj +mims Yg3)' ] = 0 (6.8)
h{d, Je; 126519, ) -V [t B+ miles(Te; sin 9, - 2¢; cos )] =0
For j = p and J = q, Eq. (6.8) becomes
f(d, Yeo zep,&fp v: [m' +rmilgg B sindy ~(mime y5p+mlmuigp ] 0
ald ) Tep 1 Zep 1 Oep) Vo [P Zep -mileg Jgocos B, (ml.msZEP"'mLmo-y.EP)‘] =0
h(d) Tep 1 Zep 1 Bep) ~VA [Miim Bt milgs(Fepsind, - Zgacos9y) | =0
£(d,Veq 1 Zeq1Veq)™ :[m' +milgg B sindy- (mimeSeq *mimoZeg) | = 0 (6.9)
9(d 1 Veq 1 Zeg 1 Oeq)" Ve [m' milgs gq cos 9y (m imsZeg*MimoYeq) ]
(0 Veg « Zeg 1 Oeq) = Vi [Mirs Oeg+ Mles (T SN0, = Zeg 0SB,y )] =0
We multiply through by YEq, 2mg, O ‘§Ep -zpy, and -Bg
then add all six equations, ang integr ver the length cf tge

blade:
R ) _
[[qu' f (d:YEP nzgpnﬁsp)'yep'* (d 1Yeq JZEQ:'&gq,)
0 —-— - - - -
*zsq'g(dSEp:iEp' ﬁ'E;:a) = zsp'g(d 1 Jeq ,qu,'a‘gq)

*&q‘h(d Nep1 Zep! 659) -Sip'h (d1Veq 1Zeqs é&q)] dx
Ra T
= (-sz"’: ) I m [7& Yeq* Zep Zgptim Vtp Vo
0

3 3 \o = & .5 3 )
"les(?sp‘SEq*'ysq‘?’ep)smeu‘lss(zepﬁzq*'ZEqﬁep)WS&ujdx

Ra

. 2o Lo2= IE o2z 1,0 23 s ]
'f {": [(m'lmg Yep *mims Zeg ) Yot (Mims Zgp +Mimo Yeo) 2eq
o]

P C 25 1, b 2= V3
o3 oo ) e ke et e 25, ]

(6.10)




The left side of Eq. (6.10) 1s equal to zcro, since it 1is
identical with the left side of Eq. (4.206), and the latter was
proven to be zero by using the boundary conditiones. By i.tegration
by parts, we rewrite the last two lines of Eq. (6.1C; as follows:

( b 2=_\'3 ]
s =t b 2= t\s o2 'y 5
1 {v,? [ (riimé Yeg* mimo Zeo) Jeq* (Mims Zep* Mimo Yeo) Zeq
. = . 2= NG 1+ 2z |+ |'L 2= ||2 ]}dx

"V: [(m‘lmg qu',-fmlmo ZEQ) yEP+ (m ims qu Mimo yEQ) Ep

(6.11)

. - - v 2= 1| I L .-;_
= {2 it g i Zap)Beg * I oms 2t il Fes)

A
+ (m'im§ igfp m'lmg'\]ecﬂ iep]} L

W 20 v 25 0 \G
-v: Umlm% Yeo* m'lmozﬁw))'Ep
LY

It 2 1T bt
-fiv@ = v& el fimé e Jea *+ime
0

(Je)2Zeq * 260 Yed )+ imd 260 Zeq | OX

s o hem tail

The expression inside the second pair of wavy brackets 1n /U

Eq. (6.11) is equal to zero, since yp and zgp vanish at x = 0,
and m' vanishes at x = Ry. Eq. (6.10) now yields the orthogonali-

ty relation

R
[rr! [Tep Tea* Zep Zeq * im Otp Ocq
0
+ lES (9Ep 65Q+ YEq :&Ep) sin '&u' lES(ZEp E‘Eq" ‘;-Eq 'BEp)ws ﬁh (6.12)

¢ 2T g e 2= 13 - - . 2= )=
+imé Jep Jeq +imo (Veg Zeq * Zep Yeq) Tims Zg;zg;]dx =0

for Vp* Vg

By analopy with Chapter 5.l, the solutlon of Eq. (6.4) 1s
organized as follows. With the trial-solutlon sum in Eq. (5.32),
Eq. (6.4) becomes (since f, g, and h are linear functions of the

unknown)
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n - -
E’ [ f(d, Ye; 1 Zej B;la;t m Vej G5 m les U, 8; sty =(Mime Vej

+m imgie;)'aé]" Yeé("o*: e, 2e :\9'5 | f35|. | (.591)

n - — - . _
52.1 [g(dlyﬁjl-z-ﬁj l‘@Eé)qz""m ZEj qa"ﬂ'\.lgsﬁgaq’ COS'l?u'(mlnng}!

+Mimg 9:5').63']' Zoolx it Ve i2e O léelﬁsl B (6.13)

n = e 2@ e - . - o
52-1 [h(d "y-gé ,255 ,ﬁg})@é"'mlrg ﬁgéﬂi*ﬂ\".gs(yeé Slnau"ZqCOS\&u)QJ
"Mec'("ltlysfiivﬁe0‘9'50‘35\!.(5&)
with the abbreviations ipe, imo and ips as in Eq. (6.7). We mul-
tiply Eq. (6.8) by qj and sum from J = 1 to n.
2 - = = 2 1_ 3 .
32_1 [£(dFg, Ze;0 03 )04 Vim Y33~ mlgs Tg; 0y sin G,

2 0 2e= | b 2= )y
+V; (mlimé Jeg tmiime Zgg o] = 0

- = = @ 2 I- 2 1, = (6.14)
51 [Q(dl)’sgazem?ej)%‘\’émzes ; +Vj Migs Ogy ¢ cos Y,
+V3‘2(fl'hm§ EE;*'n{i'mg-Y.E;YQQ] =0
2 = 5 0 2 1. 2% 2 1, o -
5 [h(d,ygé ,zgé,x‘}gé)-a,é-va- mMim ﬁgiq,é-\@mlEs(yEésm'&u-zE,cosﬁu)qé] =0
The difference between Eqs. (6.13) and (6.14) is
n 1R e . . - o
?1 {["":yefm lesOgysin %‘(m'lm: Ye; +Mimg Zg, )']‘ (%*"3’2 0,5)}
"Yee'(xltdysléslﬁslﬂm1631)
(6.15)
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These equations are multiplied through by §Ei» EEj and §Ei,
integrated from 0 to Rp, and added.

~N
\J1

| . L _
51 (d;+v; Q;)'é[ {m [9;; YeitZei 2t im Oe Sy |

+les (Ve Doy * Ve i) sinBy-Les (Zes Be;*+ 2 '-35';)‘305%] (6.16)

s 2= 25 NI . 2= v 2= W=
(m ime y55+mtmo zﬁi) yﬁ-(m lms ZE;"'mtmoz ygi) ZE'\} dx
fu : '

- ![y,g-yﬁ»,z,;.zw Meéw"’fa]dx

is equations must be reformulated by

The third line in th
(6.11), we have

integration by parts. Like Eq.

L)
[ {(m'imfye:}”"' ime ieé')'yﬁa-(m'img Zg;+m ime '953')'igi}dx (6.17)

[\]
® !
A'.z-l—p-z-l-v+-|-| s 2=15 ) )
- - J m [tmc Yei Ye;+mo (Vet Ze; * 2ei Yej) +ims Zei 24
4]
With the aid of Eq. (6.17), Eq.

—t
Q.
x

(6.16) becomes

Ra

n .z 3

.21 (G;+ vi ;) I m [Yet Yei* Zui Zejt tm e Oe;
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Because of the orthozonallty condltion (6.12), all the terms
in the sum on the left slde disappear except for the one wlth
J = 1. Therefore,

~N
=
(@)

|

. 2
Girvi R~

RA
I [Yeé'YEl*zeé'zEl"'Meé"&Ei]d" (6.19)
0

R

f=2,z2.: 252 = 8 o -5 8 . 2=12,p: 2=13 1. 2311
J m [ysa* Ze2 +int O, +2es (T Beasind, 25050050 +ime Yei +2im Yei Zei*ims Ze ] dx
0

As 1s evident, the expression in the denominator, 1.e. the
generalized mass, 1s larger than that in Eq. (5.37) by the last
three terms. These terms are particularly important in high-
order natural modes, in which yg' and 2zg' are relatively large 1in
comparison with yg and 2g. The vi{< must be correspondingly
smaller than the v42 in Eq. (5.37), while the behavlor of Y, ZE
and 8F should hardly change at all.

The Bp] contained in Yee', Zee', and Mge' 1s an additional

degree of freedom apart from g1 through q,. In order to determine
t, we need an additional condition. It is well known that BRpl
determines ounly the position of the coordinate system (see Filg.
2.1). In that diagram, a flapping hinge was assumed. Computing
with a flapping angle without a flapping hinge (at a purely
imaginary, spring-loaded flapping hinge, by analogy with the
method of Payne) glves rise to several other not very simple prob-
lems in the natural-mode method. The blade vibrations we are
looking for will be superimposed on the coordinate system rotated
through the time-dependent angle Bpl, & zg-deflection no longer
being parallel to the rotor axls, so that zg would yield a
Coriolis-force component. It i1s now evident that Bg1(t) should
be such that the x-axls of the coordlnate system is the middle
chord of the bending curve at all times if possible.

Two methods of calculation suggest themselves. The first is
to set Bpy = q1/R. For a hinged blade, the first natural mode
does satisfy the equation (yg 2zg Og) = (0 x/R 0), within a certain
approximation. Hence, q1 1is calculated with the coordinate system
unrotated, then Bpy 1s calculated, followed by the remaining ai
in the coordinate system rotated through fgy. (With all the g
coupled, the "followed by" is not to be taken llterally. Instead,
the calculation must naturally be done simultaneously.)

~N
=
—~J

The second, more accurate method 1ls to carrvy out the entire
calculation first for Bp1 = 0, then calculate the time behavior of

(W)
\
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Bp1 from the computed gq3(t), and then carry out the calculation
once more. The values for q; will stlll be small, and these

values can then, if necessary, be used for correctlng the Bpjy curve

and for carrying out a renc.ed calculation.

7. Determining q; and éi at the Start from the Initial Conditions /48

7.1, Initial Values for Uncoupled Flapwise Bending

In order to complete the theory of the natural-mode method,

we will now deal with the following problem: given the deflections

and their time derivatives at time t = 0, what are gi and 4t at
time t = 0?2 These quantitles must be known at the beginning of
stepwise calculation (e.g. the Runge-Kutta method). It is true
that the initial values of g and 44 can be estimated or Just

set equal to zero. Howcver, 1f we wish to start from a precise

initial state as defined by the deflections, the following trans-

formation of the initial conditions 1s indispensable. By means

an inverse transformation, through which the values of yg, 2zg, and
g, as well as yg, 2E, and 6g can be recovered from q4 and q3i, the

accuracy of the representation of deflection curves by na“ural

modes can be reviewed. Naturally, complicated bending and torsion
curves can be approximated well only by a large number of natural

modes.
Again, we begin with the simple case of uncoupled flapwise

bending. Let the initial deflection 1n the z-direction zgpg and
its time derivative zgg be given:

zEa = ZEa(X)s ZEa = %2ga(x); & = initlal state.

Zrpg must be bullt up from the natural modes Etj in accordance
with Eq. (3.5), i.e.

Zgg (X) = 32_1 Fja" Ze; (x) (7.1)

In order to determline the qjg, we multiply on the left and
right by m'zgi (x) and integrate cver the blade:

Ra Ry

(] R —
Im'zEo Zgidx = 5.; qa’ajm ZEl 2g) dx
4 h 0
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Because of the orthogonality condition (4.8), the expression /4

on the right vanishes except when J = 1. Therefore,
Ra
Lm’zso Zpidx (7.3)
Gia =

Ra
[m'zg2dx
o

This equation is very similar to Eq. (5.8),

X Analogously, the
initial deflection rate zEa(x) yields
RA
/3 - .
Qia -

Ra /
fm 55,‘_2 dx
Q

7.2. Initial Value for Coupled Flapwise and Edgewise Bending

|
Let the initial conditions Vg and z '

2g and their first time
derivatives be given. We again form a trgal solution with the
(two-dimensional) natural modes defined in Eq. (3.6).

i
Yea |

2 Ye; (7.5)
b4 i 321 q'é“' d ’ 1
Eq = Ze. ‘
ZEJ’J
We multiply on top by m'yg1, and on the bottom by m'zg4, 1
integrate over the blade, and add the two equations,

Ra

] - - )
Jm (YsoYei"ZEa?e:) dx=33

RA
é=1¢é°!m’(95;§5j+25; E"a') dx  (7.6)

Because of the orthogonality condition (4.1
the sum vanlsh except for that wilth J =1. Thus
wlth Eq. (5.21), we obtain

5), all terms in
s by analogy




Ra
a[m'(Yanﬁi*'zEa Zgi) dx /50

QIQ = RA

|
Accordingly

Ra

. _ !m’(;(eqyei *ieﬁ-si) dx

Qo =

r (7.8)
Jml(g'slz""ieiz)dx 7

7.3. Initial Values for Coupled Flapwise Bending, Edgewise
Bending and Torsion

We will now proceed directly to the most complicated case
discussed in Chapter 6. It contains the two simpler cases dis-
cussed in Chapters 5.3 and 5.4 as special cases. To represent the
prescribed initial deflectlons ygp,(x), zga(x), and 6py(x), we now
form the following trial soluticns using the (three-dimensional)
natural modes defined in Eq. (3.8).

[Veal Fygt
w -
Zgo| = 3% Yja |Zg (7.9)

Following the sum symbol on the right side, we must arrange
to have an expression which again vanishes for all j except for
j = 1. The complicated orthogonality condition (6.12) may be of /51
assistance 1n making them vanish. The problem 1s to multiply the
three above equations in succession by appropriately chosen fac-
tors (in some cases, after first differentiating by x) so that
when the resulting equatlons are added and integrated from 0 to
RA, the expression inside the sum will correspond to that in
Eq. (6.12). This does not prove to be especlally difficult, and
lead to the followlng equation.
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Ra

Jm' [YEa Vei* Zeo Zei *im Fea Vi les (Vi Peat YeaPe ) sin Sy
o

- lgs (Zeieot ZEAE'EL)“’S' Butime YeaYeitime (YéiZ'Eo*)’éei;si)*imtzzlsai'si]d"
(7.10)
e o - - . - - - - N
"'S—;%afm [)’eiYe3'+zsi153'*lmz@ei”‘sg*'-ss()/si19‘5}*)’5}"&)5'-" Tu
3= °

- - a . Y Y B Y By By ey B 2-/._/
- les (ZeiSey+7e; i) cos Gtime’ ei ez imo (VeiZe* Ve j2eiltime ZE(zEj]dx

Because of the orthogonality condition (6.12), all the terms
in the sum on the right vanish except for that with J = 1. Hence,
Eq. (7.10) beccmes

RA
e - _
. = \7_* S e : 2 . Ve . {
Qia NJm [YeaYei*ZeaZeitim PeaPeitles(Vei PeatyeaPei) sin Sy
o

(7.11)
- s 3 I A N T S R SN TR LI P
‘es (Tgi Qea*ZeqDe;)c0s Gyt imd yea‘/a*tmo()’s;zsonEa'lel)"lms zEazs;] dx

Nj 1s the denominator constant (generalized mass), from Eq.

(6.19). If we replace ygg, ZEas Oga DY YEa, ZEa, and 0Ea, we
obtain

Rp

® 1 e o - . I‘ - . ¢ N - .
Sia™ N; !ml[YEoYEi*zEa Zgit i GeaPei* g (YEi'a'Ea" Yea Bgi) sin &, (7.12)

- .." . . A LY 2P I -l 0 ol o v 200 ot Y
Les (255'&6.0*250 ’}EJ €os G ttme YEQYEE"Mg (Yelizén‘Yéa z’Ei)"lmz‘zéo zéi] dx

§. Sample Computations /52
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8.1. Programs

In order to be able to calculate the dynamic behavior of rotor
blades by the method of coupled flapwise-bending, edpewice bending,
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and torsion natural modes, a Fortran program was written. It
includes all the preceding theory in 1ts most general form, except
for the moment of inertia due to expanslon of the blade in the
transverse direction, which has not yet been incorporated into

the program for coupled natural vibrations. Furthermore, aerc-
dynamic calculatlons are included, so that the program does nct
need the aerodynamic forces and moments as inputs in addition to

the natural vibrations, but instead the rotor geometry, the rotor
moduli uy and uz, and the induced downwash wiy. Other influences on
the airflow toward the blade can be incorporated without difficulty.

These mutually compatible programs make it possible to cal-
culate the coupled natural vibrations by the multihinge articulated
blade method with a maximum of 40 identical blade segments (i.e.

a maximum of 120 degrees of freedom), than to reduce themby a type
of selection procedure to a maximum of 20 identical blade segments,
and thus to calculate the forced vibrations, e.g. separation
flutter. The Runge-Kutta method is employed. Up to 12 degrees of
freedom qi, i.e. 12 natural modes, can be taken, each natural

mode consisting of three curves. For the aerodynamic component

the theory 8 = const. was used from Report 3 of Just and Jaeckel i
[7]. In addition, however, the wind speeds had to be transformed :
‘nto the fixed-blade-element system which is wind-tipped because !
of the blade deformation. Furthermore, the aerodynamlic forces |
occurring on the blade element had to be correspondingly trans-
formed back. Subroutines were called for the unsteady profile
coefficients. §

The results of the computations are the values of the general-
ized degrees of freedom gi as functions of time. Using them, we
can calculate the blade retention forces, and, with the ald of the
natural moments, the tending and torsion moments together with the
assoclated material stresses, as was done in Amer and LaForge [u].
Furthermore, the behavior of the gj will indicate whether, in a /
particular flight situation, the blade vibrations will grow with
time, or whether there is stability. Peter Criml [5] has investi-
gated this question in a more general fashion, although the
mathematics is somewhat complicated in that case as well.

(W8]

|

8.2. Given Data and Curves

As our "experimental animal," we take the Sikorsky S-61 H1
helicopter in the version with flapping hinge but no swivel hinge.
Most of the data on the blade 1s contained in TRECOM T.R. 64-15 [€].
The miSsing data was chosen so that 1t was compatible with the
given data. The basic parameters are

ho




R = 9.45m a = 0.32C6 m 1 = 0.45

(8.1)
Cogo= 21.24 8~* 2 = 5

The blades have the NACA 0012 profile, and a constant chord
of 45 cm, and are thus rectangular. The welght per segment and
in particular the rigidity values do vary, however, as shown in
the Table on the next page. We willl take these weights as belng

concentrated in a point at the x-position concerned. We choose
the following quantities:

2
E = 7000 kg/mn? G = 2700 kg /mm

miimg = 18107 kg s mimg= 0.756-107 kzgs (8.2)
ir = 0.08m "‘ks 0.03 kg s/ m

The latter corresponds to a center of gravity displaced back-
wards by about 6.5% in comparison with the =2lastic axis. 1In the
undeformed state, the latter 1s taken to be a stralght line co-

inciding with the x-axis (see Fig. 2.1). In the following, we
calculate with

eA'ep‘B1-Bg- 0
A\&-"“c ) \9@ 1?‘5-0

(8.3)
Ve=TD v =169  g=0425%2% “'“
which corresponds to a flight speed of v = 75 m/sec and a rotor /55
angle of attack of o = -13°, Since the aircraft weight must be

about 9300 kg, we require kg = 0.0133 1n horizontal flight. Using
the curves of the DFH Report 42 [8], we obtain

Bgr ~ 12° §=ve-wi~-197 (8.4)

which corresponds to a wi of 2.1 m/xec. We calculate a mcre pre-

cise wi and B from Report 3 [7], Chapter 9, Section 4, or Chapter
3:

41
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TABLE OF BLADE PARAMETERS WHICH ARE FUNCTIONS OF x

x_ Segment wt Thickness of

R-ga (kg wall [cm] 1, km"] | Llem]  Ji{emY]

1000 4460 0.183 40.38 42040  116.50

950  5.70 0,368 80.33 §u45.0 228.9

900 4.34 0.368 81.17 853.3 237.3

850 4.7 0.371 82.83 857.5 245.6

800 .16 0.378 83. 25 865.8 249.7

750 4.2 0.384  84.91 869.9 262.2 ;
700 4.09s 0.391  87.u4 986.5 27,7 4
650  4.Mug 0.401 91.15 999.0 283.0 ?
600 4.28 95.32  1011.5 2944

550 .25 97.82  1032.3 303.8

500 4.49, 0.401  101.98  1123.8 316.3

450 .u.sd 0.457 104,48 1136 .3 328.8 4
400 k.54 108,22  1165.5 341.3 1
,350 W44 112.80  1486.3 353.8 ;
300 3.98 0.457 116.55 1219.6 I .6

250 .14 0.513  121.13  1240.4 412.1

200 3.87 0.533  126.54  1269.5 582.7

450 4.7 0.673  183.15 1456.8  12u48.7

400 25.04 2.540  1873.1 2913.7  2084.2 |
050 3847 5.080 3421.8 3121.8  4162.4 |
.033%%  9.280 5.080 3121.80  3121.60  4162.40
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wix1.77 n/s B « 0.984 (8.5)

From all the previously glven data with the exception of 1,

8o, Bgs Vxs Vgzs, &, Wi and B, we obtaln the natural vibrations. In
the sense of the natural-mode method, they are a part of the input
data, but, as a whole, are intermediate results, and are therefore

presented in Chapter 8.3.

The assumed initial state for the forced vibrations can be
described by

Vg (t=0) = 0 [¥e 2e O S 2z %] (t=0)=0 (8.6)

The "=" means "for all x." It is true that, in the sense of
Chapter 7, any arbitrary initlal deflectlon curves could be used
as input, but in this as in other assumptions, the objectlive 1s
to organize the numerical examples to be as simple and clear as
possible.

Lastly, the [cy cy cm] (aerr) curves employed are important
output data. For the numerical examples of thils report, we used
subroutines based on the unsteady coefficient curves depicted in
Fig. 8.1. Various curves valid for the NACA 0012 profile were
averaged and schematicized. The coefficients depend not only on
odeff but also on the absolute value of &e £. More precise sub-
routines, in particular allowlng for the &ach—number effect, are
naturally desirable for practical calculations, and the Institute
already has some <f them. For our rather illustrative examples,
these simple subroutines are sufficient, however. One important
reason is that the largest and most influential aerodynamic
forces were calculated for cmall positive values of agrr.

8.3. Results of Computation and Discussion

Four examples were calculated with the output data presented

in the preceding chapter. The examples differ both in the natural

modes permitted as degrees of freedom, and in the fact that the
x-y-z coordinate system matches the rotation through Bgj(t) in

the sense of Chapter 6 in one case, and does not in the other.

The situation 1s summarlized in the following table.

N
-3

P S
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Lxample NB Natural modes - NU See Figs.
1 0 1. Mq 2 8.6 - 8.7
II 1 1. My 2.Mp | 1. My 2 8.8 - 8.9
11 0 1. Mg 2.Mp| 1My 3 8,10 - 8,15
Iv 1 1. Mg 2.Ma| 1.Mg |1 My 2 8.16 - 8.19

NU = number of rotations about rotor axls

1.Mg (2.Mg) = First (second) flapwise natural mode
l.MC = " edgewise natural mode
1.Mg = " torsion natural mode
NB = 0(1l): the coordinate system is (is not) rotated through the

previously calculated flapping angle Bg1(t).

This means that for NB = 0, apart from the natural modes
mentioned, there is also the degree of freedom "rotation about the
flapping axis," which we will call 0.Mg. The assoclated q, i.e.
q(0.Mg), is calculated just like q(1l.Mg), but uncoupled and
starting from a nonrotated system. Then the other a's are cal-
culated, relative to the system rotated by Bp1(t), where Bp1,

BBl and BR] are easily obtained from q, 4, and § of 0.Mg. It is
sufficient to calculate Bpi(t) Just one Runge-Kutta step in ad--
vance, and then to bring along the remaining q. They are naturally

affected by q(0.Mg), particularly q(1.Mg), which almost vanishes
for NB = 0.

The coupled natural modes used in the example are depicted in /58
Figs. 8.1 through 8.4, The associated natural frequencies are

Natural mode | 1.Mp | 2.Mp l 1.Mg | 1.M,

Natural frequen- (6.7)

cy (angular fre-
quency) in 21.813 | 56.18 | 18.02

sec-1

144.6

Forty segments were used in calculating the natural vibra-
tions, and this number was reduced to ten in order to calculate
the forced vibraticns. A reduction to 20 segments woeuld also have
been possible. Calculating the generallzed aerodynamic forces

Ly
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for forced vibraticns (see Eq. (6.19)) naturally requires fewer
segments than calculating the natural vibratlons. The natural
modes were determined so that the principal deflectlon curve in
each case has the value unity at Point 41, and thus is somewhat
less than unity at the tip of the blade, which colncides with
Point 40. The deflections in Figs. 8.1 through 8.4 have the
following dimensions:

Deflection
Ve | ze | & (8.8)

Dimension i[m] , [2] | {~]

The degrees of freedom g4 in Figs. 8.6 through 8.19 are thus
dimensionless.,

Example I shows q(0.Mg) and q(1.Mg) or, expressed somewhat
differently, q(l.Mg), first in the stationary system, and then in
the system rotated by Bgi(t), where the latter q, as it must,
almost vanishes. The building-up process 1s virtually complete
by the end of the first rotation, and so the system is very stable.

In example II, the first two flapwise natural modes and the
first edgewlise natural mode are taken into account, relative to
the (Bl = 0)-system. The weak q(2.Mg) and the strong q(1l.Mg)
are striking. Further details are provided by the discussion of
the next example.

Example III shows the same degrees of freedom, but in the /59
"flapping'" coordinate system. Initially, the statement made about
the g-curves in examples I and II also hold in this case. How-
ever, the q(l.Mz) curve eventually acquired almost exactly the
opposite deflection direction as in Example II. Thils is due to
the BBl‘éBl Coriolis forces, which, in the first rotation, particu-
larly between ¢ = 80° and ¢ = 180° impart to the blade a strong
impulse in the forward direction and thus impose upon it a dif-
ferent motion behavior. Edgewlise bending can thus be calculated
correctly only with NB = 0.

The end of the bullding-up process in q(1.Mz) cannot be fore-
seen even after three rotations. Thils means that, under the
assumed conditions, perturbations would continue to act, and even
be amplified, as long as a skilled pillot did not counteract them.
Thlis circumstance 1s c¢losely related to the small difference
between WRy and the first edgewise natural frequency. The instal-

lation ot a swivel hinge, which 1s Indeed normally present, or
detuning the first edgewlse natural frequency in another fashicn
would be advantageous in this case.

TN
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In Example IV, in which the step width was reduced from
Ayp1 = 10° to Aypy = 5°, with the result that the AYpy = 10° com-
putation was found to be quite usable, we have the degree of
freedom 1.Mp, *.e. the first torsion natural mcde, in addition
to the degrees of freedom 1.Mg, 2.Mg, and 1.Mz. They bring about
more fundamental changes 1in the situation than 0.Mp does in
Example III. The latter variable 1s agaln omitted here, in order
to study the influences separately. The most conspicuous
phenomenon 1s the amplification of q(l.Mp). As a rough calcula-
tion shows, 1t 1s futile to look for the explanation in the
hysteresis loops of the cy(ogprr) and the ep(oerr) curves, although
both of them could conceivably contribute tc ampliiying torsion,
the former in connection with a positive lever arm for the 1lift
force. The situation becomes clear if one considers the inter-
action between q(l.Mg) and q(1.Mp). If g(1l.Mp) is large, this
makes the blade angle of attack, the 1ift and thus §(1.Mg)
particularly large. From this point of view, q(1.Mg) and q(1.Mr)
must therefore vibrate in countermotion. The up-and-down motion /60
of the blade now induces a further component in the 1lift, one
proportional to -q(l.Mg), since the downward flapping of the blade
increases the 1lift. Thils secondary 1ift component always reaches
its maximum when d(l.MT) is greatest, so that it feeds power to
1.Mp when it induces a buckling moment.

This amplification effect, which can be provided with a more
exact mathematical foundation, therefore rests on the fact that a
lifting force induces a buckling moment. This occurs in our
example because we apply the 1ift force to the x-axis, while the
center of gravity of the blade is further back, since
lgg = 6%7 > 0 (cf. Fig. 2.1 and Chapter 8.1). In the first tor-
sion natural mode, this circumstance is expressed in the positive
zp-component (see Fig. 8.5). In the first torsion natural vibra-
tion, the blade elements therefore do not rotate about the elastic
axis, but roughly about the center-of-gravity axis.

In the first rotation (see Figs. 8.16 and 8.17), the buckling
11ft moment, which occurs not only dynamically, but also statical-
ly due to the centrifugal forces when zg' is positive, causes
increases in the blade angle of attack, and thus in the thrust ang
in q(1.Mg) as well in comparison with Example II. In the second
rotations, however, the torsion vibration is already so strong
that aefr fluctuates constantly between large positive (greater
than 16°) and negative values, so that the mean value of q(L.Mg)
and thus the rotor thrust become zero. The torsion is further
amplified by repeated circults of the cg-ceff hysteresis loop.
Naturally, 1n this case, the blade experiences a strong constant
drag and an even stronger sin Vpl-shaped drag, which is reflected
in the behavior of q(1.Mg).

It 1is unlikely that the Sikorsky S-61 blade is so unfavorably /61
designed that all this can really happen. Inctead, the center-of-

3
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as opposed to our assumptlon, will be sc far forward
ger has a puckling moment relative to
the computation does not

put merely indicates

gravity axls,
that the 1ift force no lon
the blade center of gravity. Hence,
demonstrate the existence of a faulty design,

the need for caution.

iy
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